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Introduction

World Electricity Generation, 2010-2035- World Energy Outlook 2024

A graph of different colored lines

AI-generated content may be incorrect.

Magnetics components for tomorrow’s 
energy needs

Global Demand is exploding
- Solar PV is set to become the world’s 
largest renewable energy source by 
2029 (source)
- 30% of global electricity will come 

from Solar PV and Wind by 2030 
(source) 

Electrification is everywhere
- Inverters – Grid-tied, micro, string
- Battery Systems – Energy Storage, 

backup/UPS, BMS
- EV chargers – AC and DC fast 

chargers

https://www.iea.org/reports/world-energy-outlook-2024
https://www.iea.org/data-and-statistics/charts/world-electricity-generation-in-the-stated-policies-scenario-2010-2035
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/reports/renewables-2024
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Basic Magnetics Theory
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Basic Magnetics Theory
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Basic Magnetics Theory

Ideal Transformer modelling

µ → ∞, R → 0
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Basic Magnetics Theory

Transformer modelling

Magnetizing Inductance

Leakage Inductance

In practice, there is some flux which links one winding but not the 
other, by "leaking" into the air or by some other mechanism. 
This flux leads to leakage inductance, i.e., additional effective 
inductances that are in series with the windings. 
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Magnetics Materials

• NdFeB

• AlNiCo

• Cobalt alloys

Hard

Soft
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Magnetics Materials
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Cores
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Bobbins

- Size

- Material

- Temperature rating

- UL flammability (e.g. UL94 V1 or V2)

- UL Insulation System 
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Wires

Chosen wire depends on safety grade and dielectric 
requirements 

- Single insulation magnet wire 
- Heavy insulation magnet wire 
- Basic / Supplementary insulation
- Triple Insulated Wire (TCA3 or TEX-E) 
- Fully Insulated Wire 
- Litz Wire
- Flat Wire
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Planar Magnetics
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Losses in Magnetics

Source * https://product.tdk.com/en/techlibrary/applicationnote/howto_power-inductors.html

https://product.tdk.com/en/techlibrary/applicationnote/howto_power-inductors.html
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Copper Losses

DC losses AC losses

When the alternating current flows through 
the wire, it tends to concentrate more on 
the outer surface due to the skin effect. This 
results in an underutilization of the inner 
part of the wire that, leads to energy losses.

When multiple windings 
are near each other, 
their magnetic fields 
interact, resulting in 
energy losses

Litz wire is a type of stranded wire designed to 
mitigate the skin effect, a phenomenon where 
alternating current (AC) tends to flow primarily 
on the surface of a conductor, increasing 
resistance at higher frequencies. Litz wire 
achieves this by using many small, insulated wire 
strands twisted together, allowing the current to 
distribute more evenly across the cross-section, 
reducing resistance and losses.
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Core losses: Hysteresis losses

The term Ac lm is the volume of the core
The integral is the area of the B-H loop.

Hysteresis loss varies directly with applied frequency
- Dependence on maximum flux density: how does area of B-H loop 

depend on maximum flux density (and on applied waveforms)? 
- Empirical equation (Steinmetz equation):

The parameters KH and α are determined experimentally.

Dependence of PH on Bmax is predicted by the theory of magnetic 
domains.
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Core losses: Eddy Current Losses

Magnetic core materials are, unfortunately, reasonably good conductors of electric current. Hence, according to Lenz’s law, magnetic fields 
within the core induce currents (“eddy currents”) to flow within the core. 

The eddy currents flow such that they tend to generate a flux which opposes changes in the core flux φ(t). 
The eddy currents tend to prevent flux from penetrating the core.

Losses directly proportional to square of frequency
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Simulations Tools

• Finite Element Analysis

• Flexible X-Y (2D) or XYZ (3D) Modelling

• Types of Analysis Possible:

– Static

– Low Frequency

– Transient Analysis

• Mechanical Analysis Possible
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Simulations Tools

Magnetic effects:

– Nonlinear Materials

– Eddy Currents

Electric Field Effects:

– Varying Dimensions and Shapes

– Varying Dielectric Permittivity
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Simulations Tools

https://bourns.com/resources/inductor-loss-calculator
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Parasitics 

- CP: Primary Capacitance
- CS: Secondary Capacitance
- C13, C14, C23, C24: Interwinding Capacitance
- Llkp::primary leakage inductance
- Llks::secondary leakage inductance
- LMP::primary magnetizing inductance
- LMS::secondary magnetizing inductance

*Flyback Transformer Equivalent Models
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Mitigating Parasitics 

At high frequencies, parasitic capacitances can resonate 

with the transformer's inductance, leading to voltage and 

current oscillations.

• Resonace

• Increased Losses:

• Voltage Spikes:

• Distortion of Waveforms:

• Careful Design:

Proper winding techniques, insulation, and core selection can 

minimize parasitic capacitance and inductance.

• Shielding:

Shielding between windings can reduce coupling capacitance and its 

impact on the circuit.

• Proper Grounding:

Effective grounding can minimize the effects of stray capacitances and 

currents.

• Component Selection:

Choosing components with low parasitic values can help in reducing 

the overall parasitic effects in the circuit.

• Optimized PCB Layout:

In transformer designs, proper PCB layout can help minimize parasitic 

capacitance and inductance.
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SiC and GaN Magnetics Design Approach

• SiC operating voltages 650 - 1600 V
• Higher efficiency and power density 

versus Si
• Faster switching speed versus Si IGBT

• Si: 5 - 50 kHz
• SiC: 30 - 300 kHz (Currently 30 - 150 

kHz)
• High temperature range of operation

• Greater than ETR –40 to +125 °C

• GaN operating voltages 650 - 100 V or less
• Higher efficiency and power density 

versus MOSFET
• Faster switching speed versus MOSFET

• MOSFET: (80 - 800 kHz)
• GaN (100 kHz - MHz)

• Economical pricing compared to SiC

Si GaN 4H-SiC

Bandgap (eV) 1.12 3.4 3.26

Electron mobility μn (cm2/V s) 1400 2000 1000

Breakdown Electric Field Ebr (MV/cm) 0.3 3.3 2.8

Saturation electron drift velocity VS (106 cm/s) 10 15 22

Thermal conductivity Θ (W/cm K) 1.5 2.53 4.9

End user advantages
• Miniaturization potential
• Safer and more reliable power density

Magnetics component design challenges
• On-state performance at higher voltage
• Higher frequency and temperature operation
• Switching losses
• Safety requirements
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WBG Magnetics Design Approach

Higher Operating Frequency

Core Material Selection

• SiC
• Operating frequency > ~30 kHz: ferrite (MnZn) versus 

Fe/Ni powder or amorphous/nanocrystalline

• GaN
• Operating frequency > ~600 kHz: ferrite (MnZn) or 

high frequency powder designed for low core loss
• Limited selection
• Typically, more expensive  
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WBG Magnetics Design Approach

Higher Operating Frequency

fNAK

V
B

Cf

m

810
=

Faraday’s Law
Bm = Operating flux density
V = Voltage
Kf = Scaling factor depending on waveform
N = Turns
AC = core area

From the equation, ideally, increasing frequency:
• Reducing core area keep the operating flux density about the same
• Fewer wire turns possible, flux density about the same
• Operate at lower flux density

Actually, there are limitations due to core and wires to consider
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Magnetics Design Limitations for WBG

Calculated core size may be smaller but same power 
density means same current level
- Copper wire size remains the same
- Wire winding area smaller
- Reduction of wire turns may not be possible
- Coil winding dynamics

• Winding AC losses
• Parasitics low
• Flat wire
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Standard Magnetics

DR334A
Common Mode Chokes

DR334A
Chip Inductors

CHV201610A
Common Mode Chip Inductors – LAN, CANBus

DR334A
Wirewound Chip Inductors

CHV201610A CHV201610A
Push Pull Transformers

CHV201
610AFlyback

CHV201610A

LAN Transformers
CHV201610A

BMS Transformers

SMD Power Inductors

Non-shielded Semi-shielded Shielded Shielded

Molded

High Current
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Custom Magnetics
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Custom Magnetics

- Magnetic FEA Analysis

- Thermal Analysis

- Mechanical/electrical simulation

- Prototypes / pre-series

- Hi-pot / impulse test
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Design Verifications
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Magnetics Design Limitations
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Flyback

- Turns ratio

- Inductance

- Core Shape EF, EFD, ETD, EER, EI

- Core material 

- Gap length

- Bobbin

- Insulating Tape

- Insulated wire

- Varnish

Spice Model: parasitic parameter
- LP: primary inductance
- LS: secondary inductance
- LK: leakage inductance
- Cp: primary capacitance
- CS: secondary capacitance
- CI: interwinding capacitance
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Custom Magnetics

Forward Transfomers

Push-Pull Transfomers

PFC Inductors

Gate Driver Transfomers
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LLC DC/DC Converter

- DC input voltage from PFC (+100Hz AC ripple)
- DC  output isolated voltage to HV battery

- H bridge: generates a square pulse waveform

- Lr: resonant inductor
- Cr: resonant capacitor
- Lm: magnetizing inductance of the isolation transformer

- LLC: Square waveform → almost-sinusoidal

- Isolation transformer:
o Galvanic isolation input/output
o Block conductive EMI noise
o Protect primary from load short circuit

- Ns/Np 
o nominal input and output voltages

- fSWITCH < fRESONANCE→ higher current in the resonant tank, 
higher conduction losses

- fSWITCH > fRESONANCE→ higher switching losses

- fSWITCH = fRESONANCE→ best working efficiency
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Common Mode Chokes
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High-voltage CMC and DMC

Applications directly connected to high 
voltage battery (400Vdc or 800Vdc)
- EV Electronic fans
- EV PTC heaters

CMC
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DC Chargers

Output Choke

Grid 
Three Phase 
400vac

DC-DC

HMI
+

Payment
Wireless 

Communicatio
n

Isolation

OUTPU
T 

FILTER
AC-DC

PFC inductor

CANBUS

DC-DC

Auxiliary 
Flyback

SRP/SRN/SRR

AC-DC PFC DC-DC

Isolation 
Transformer

Gate Drive 
Transformer

FILTER
+

CIRCUIT 
PROTECTION

Rela
y

I sensor High Voltage DC
(150V to 920V)

200A-700A

Chip LAN transf. SM4532XX
CMC SRF2012CPU

CPU
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PV Solar Systems

Auxiliary 
Flyback

Isolation Trafo

Push-pull 
Trafo HCT

Gate Driver 
Trafo

Solar Inverter
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PV Inverter
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Home Appliances

HCT push-pull trafo with 
SN650x for IGBT gate driver

Flyback

Auxiliary Power 
Supply
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From Miniaturized to High Power Magnetics



Thanks!
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