

Long Duration Energy Storage (LDES) Council

March 2023 – K.EY conference Rimini – Alexander Schoenfeldt The storage for the flexibility of the electric system

About the LDES Council

The LDES Council is formed by ~60 companies, from start-ups to large corporates in over 20 countries

TECHNOLOGY PROVIDERS

ANCHOR MEMBERS

Industry & services customers

Capital **Equipment** providers manufacturers

Low-carbon energy system integrators & developers

III ENERGY VAULT

△ ANTORA

BUILD TO ZERC

HYDROSTOR

□ INVINITY

MINE STORAGE

Peniel

PUMPED HYDRO STORAGE

Quichet Energ

Google

Breakthrough Energy

cellcube

Ambri

Breeze

BRENMILLER

eos

 \Diamond

ENERVENUE

ENLIGHTER

Key principles of the **LDES Council**

Executive-led

Global

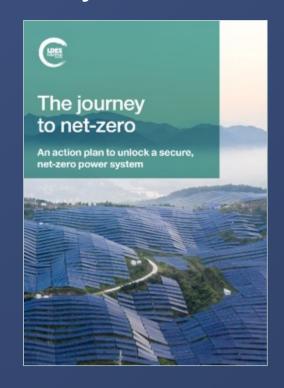
Fact-based

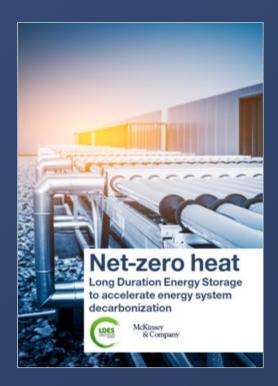
All types of energy storage (Chemical, Thermal Electrochemical. Mechanical)

The LDES Council is an independent body with its own governance structure, with the mission to accelerate energy decarbonization through the scale-up of LDES



The LDES Council Reports


Net-zero power


24/7 clean PPAs

Policy Toolbox

Net-zero heat

LDES Council technology providers by technology type

Thermal		Electrochemical		Mechanical		Chemical	
Member	Sub-Archetype	Member	Sub-Archetype	Member	Sub-Archetype	Member	Sub-Archetype
AZELIO III LE		redflow	Hybrid flow battery (ZnBr)	Breeze		ceres	Solid oxide fuel cell
TORC	Latent heat (solid-liquid)	eos	Aqueous Zinc Halide	H HYDROSTOR	CAES		
BRENMILLER ECHOGEN power systems	Sensible heat (solids)		Aqueous (VRFB)	SIEMENS GOGGY Rhe Energise	Crovity based DC		
Q ENERGYNEST □ KRAFT BLOCK		ENLIGHTEN	Aqueous (NaSICON membrane)	● MINESTORAGE	Gravity-based PS		
MAGALDI		∄Ambri	Metal anode (Calcium)	ENERGY VAULT	Gravity-based		
STORWORKS Electrified Thermal Solutions		⇔ EMERYINUE	Metal anode (Nickel Hydrogen)	ENERGYDOME	Liquified CO ₂		
△ ANTORA O RONDO		⊗ ESS™	Metal anode (iron flow battery)	Rye Development	Closed loop PHS and run of river		
куохо	Sensible heat (solids / liquids)	e/zinc	Metal anode (Zn)	PAMPED HYDRO STORAGE Couldn't Energy	PHS		
MALTA		Form	Metal anode (iron air battery)	and the second			
SaltX	Thermochemical (salt)	O WOLTSTORAGE	Metal anode (Iron salt)				

CellCube is leading VRFB provider of MW-scale BESS installations with 3-10 hours both in grid and industrial applications

GRW Electric

Electric power equipment - Resilient Microgrid in Illinois, US

Industrial Microgrid Market sector Location Bolingbrook, USA (2023) CellCube Product 4 x FB 500-2000

Energy shifting, peak shaving, UPS, PJM **Key Applications**

Rated power / capacity 2MW / 8MWh

Medical Equipment - Resilient Microgrid in California, US

Applied 🗸 Industrial Microgrid Market sector Santa Margarita, California, US (2022) Location CellCube Product 1 x FB500 - 2000, 1x FB250 - 1000 **Key Applications** Energy shifting, offgrid, backup Rated power / capacity

0.75MW / 3MWh

Grid Company - Resilience for energy community, Sweden

Critical Infrastructure

Lichtenegg, Austria (2010)

renewable integration, DSM

1 x CellCube FB 10-100

10 kW / 100kWh

Grid Company – Renewable Integration, Austria

>10 years in continuous operation (COD in 2010)

Market sector Location CellCube Product **Key Applications** Rated power / capacity

Market sector

Critical Infrastructure Simris, Sweden (2019) 1 x CellCube FB 250-1000 Renewable baseload, Islanding 0,25MW / 1MWh

EVN

Mining Plant - moving towards net-zero, South Africa

Market sector Remote Microgrid Brits, South Africa (2023) Location 2 x CellCube FB 500-2000 CellCube Product **Key Applications**

Energy shifting, renewable integration

Rated power / capacity 1MW / 4MWh

Grid Company - Congestion Mgmt - Brazil

Critical Infrastructure Market sector Location Ipiranga, Brazil (2022) CellCube Product 1 x CellCube FB 250-1000 **Key Applications** Peak Mgmt, Frequency / Voltage Regulation Rated power / capacity

250kW / 1000 kWh

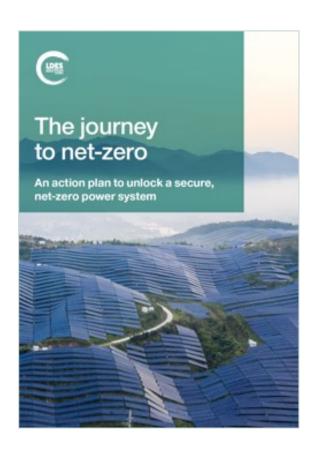
Grid Company - ESS Test Facility, Italy

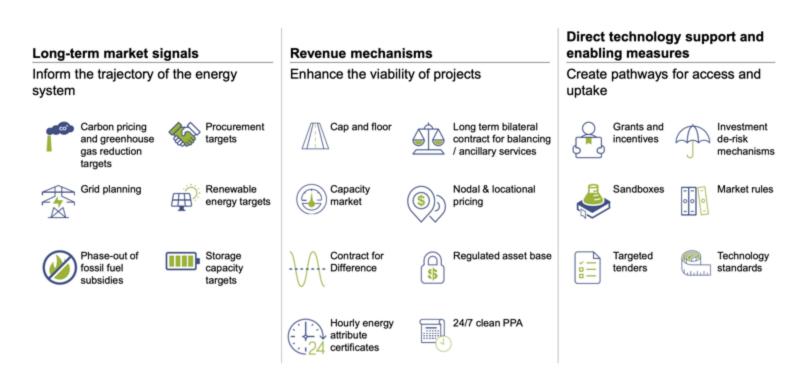
Market sector Critical Infrastructure Location Sardinia, Italy (2016) CellCube Product 2x CellCube FB 200-800 **Key Applications** FCR, VAR, Trading, Test of Degradation

Market sector Location CellCube Product **Key Applications**

Industrial Microgrid Sydney Area, Australia (2024) 12 x CellCube FB333 - 2666 Energy shifting, FFR, arbitrage 4 MW / 16MWh

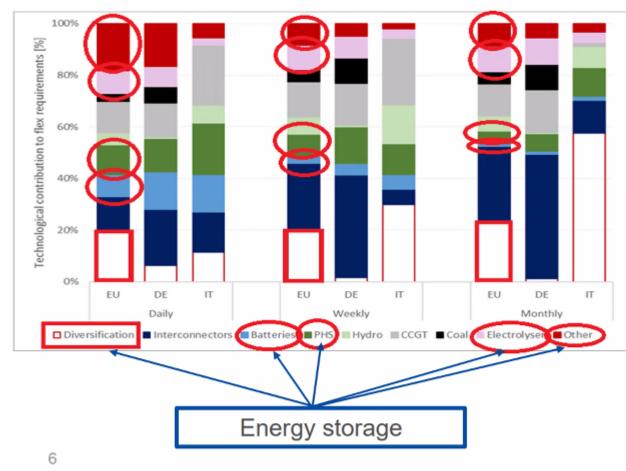
BUSHVELD



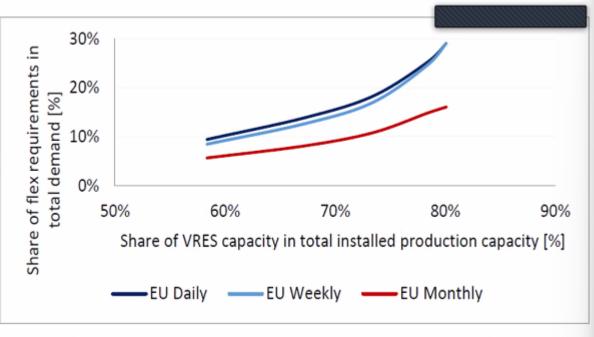

The storage for the flexibility of the electric system

Policy & Regulatory Tools Report

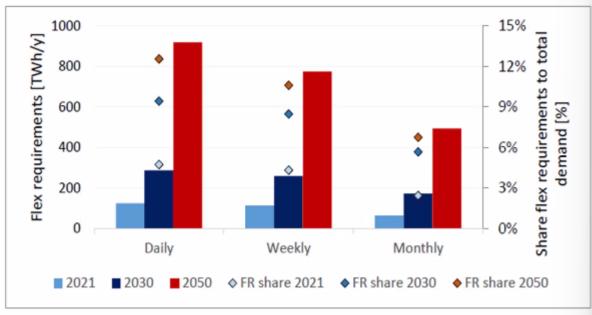
Key Takeaway: There are a wide range of well-tested tools available to policymakers looking to accelerate the role of LDES in power systems



The Council developed a "toolbox" of different options for consideration



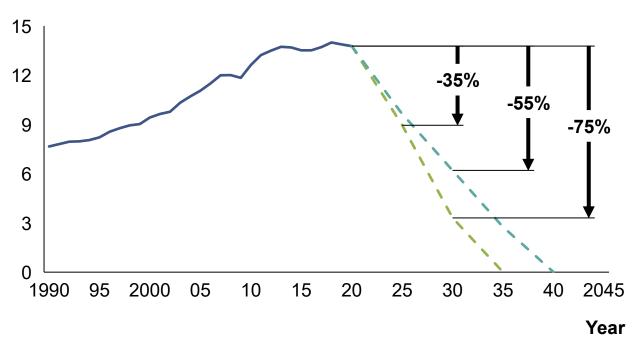
Role of energy storage


Technological contribution to flexibility requirements in the EU, Germany and Italy, 2030

Source: March 2023 Beatriz Sinobas, DG ENER Unit B4

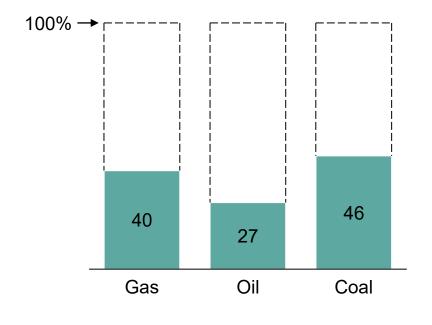
Flexibility requirements and their share to total demand (FR share) in the EU

Source: JRC analysis.


Energy transition increasingly about more than decarbonizationenergy security and affordability are key imperatives

Historical emissions — Net-zero 2035 (MEDCs reference case)¹ — Net-zero 2040 (Global reference case)²

Deep and early decarbonization of power sector is key to achieving 1.5 C targets

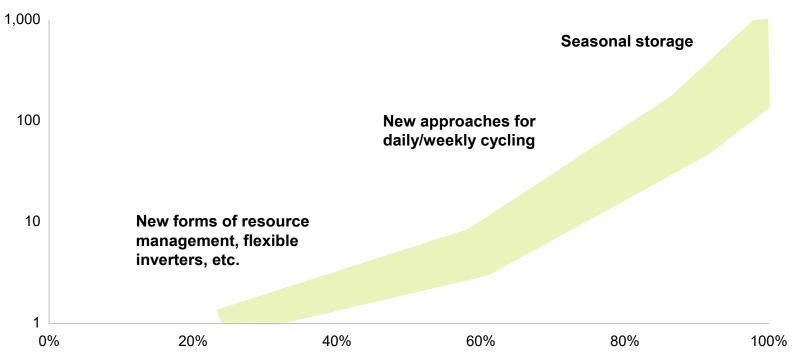

Global historical emissions of the power sector and assumed reduction pathways

Gt CO₂e

Energy transition also seen as means to reduce dependence on imports

European Union imports from Russia, %, 2021

Informed by IEA Net Zero 2050 report on more economically developed countries (MEDCs) needs to get to net zero power by 2035. Consistent with US
President Biden climate ambition.



^{2.} Informed by IEA Net Zero 2050 report on the world's power sector needs to get to net zero by 2040.

Long Duration Energy Storage (LDES) will be required to get to net-zero power systems

Adoption curve of longer flexibility durations accelerates at 60-70% RE penetration

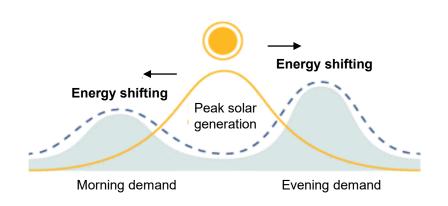
Storage duration, hours at rated power

Percentage of annual energy from wind and solar in a large grid

RES integration leads to new system challenges

Power supply and demand not always in balance

Transmission flow changes potentially require costly and lengthy transmission upgrades



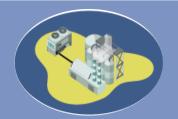
Retirement of conventional, synchronous generators creates need for new sources of grid support services, e.g., reactive power, inertia

Long Duration Energy Storage deployed in different contexts

LDES unlocks many different use cases

Energy shifting

Grid services


Optimizing transmission & distribution investment

Firming renewable PPAs for heat and power

Supporting island grids

Supporting industries with remote and unreliable grids for heat and power

LDES typically offers two major value propositions

Energy shifting

Time horizon	Role of storage	Typical solution	
Intraday	Balance variable daily generation with load	8-24 hours LDES	
Multiday, multiweek	Support multi-day imbalances	24+ hours LDES	
	Absorb surplus generation to avoid grid congestion		
Seasonal duration	Support during seasonal imbalances	Pumped hydro,	
	Mitigate extreme weather events	compressed air, Hydrogen	

Grid services

Grid	services	offered	by LDES
			•

Inertia

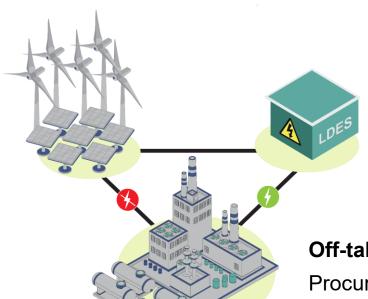
Primary/secondary/tertiary reserve

Reactive power/voltage control

Short circuit level improvement

System restoration/ black start

Note: services are technology-specific



Already today, 24/7 clean PPAs can enable investments in time-matched clean power supply – typically the solution includes storage

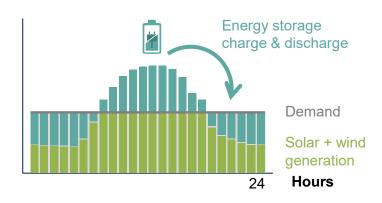
Hybrid system as technical solution for 24/7 clean PPA

Renewables generation

Often Solar and Wind, i.e., non-dispatchable generation

Energy storage

Dispatchable energy storage enables supply when there is no direct renewable generation

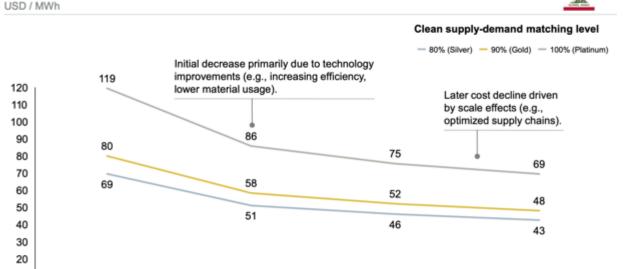

Off-taker

Procuring clean power on a granular time basis through 24/7 clean PPA backed by renewables and storage

Time-matched clean supply

Storage enables matching of clean power supply and demand

Clean power that is supplied for each unit of demand, measured at granular time intervals (e.g., 1 hour or less)



LDES and Renewables: paired symmetry

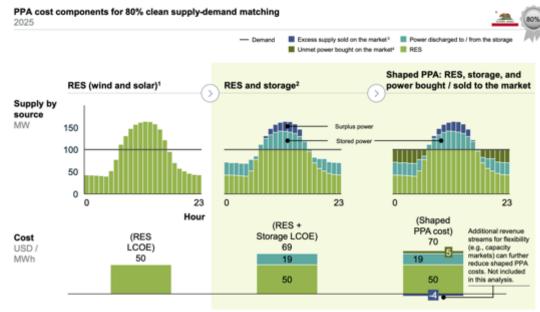
RES + Storage LCOE to decrease as LDES technologies mature

RES + Storage LCOE¹ for 100 MW baseload 24/7 supply in California over years

RES + Storage LCOE is calculated as: (annualized cost of renewable generation + storage capacity) / clean energy delivered to the
off-taker. This excludes additional costs / revenues that would impact final PPA price.

2035

2040

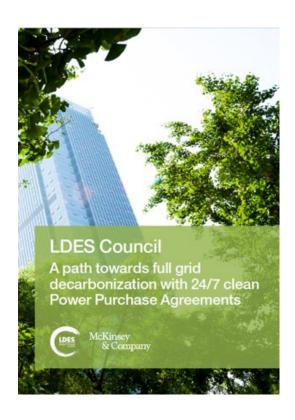

2030

Source: LDES Council 2021 technology benchmark and report, McKinsey Power Model.

10

2025

The Shaped PPA Cost consists of renewables and storage LCOE, and cost balance of buying and selling power to the grid



- 1. Calculated as total costs over energy delivered by solar and wind.
- 2. Calculated as the total cost of the capacity mix divided by the energy delivered by the renewables and the storage.
- Surplus power from PPA RES assets sold to the day-ahead market. That excess is assumed to be sold during the average price for cheapest % of hours (where % of hour is equal to the % of time that there is excess generation).
- Power bought 20% of the hours when supply from low-carbon sources is unable to meet demand. The price at those hours is assumed to be the price of the 20% most expensive hours (as met by peaking assets).

24/7 Clean PPA Report

Findings: 24/7 clean PPAs boost flexibility to fully decarbonize power

Today's clean power PPAs...

100% RES

Today's 100% RES power procurement typically only achieves 40-70% emission reduction due to variable generation

Future 24/7 clean PPAs...

0 gCO2/kWh possible

Full decarbonization through temporal and geographic matching of supply and demand Carbon optimized 24/7 clean PPAs...

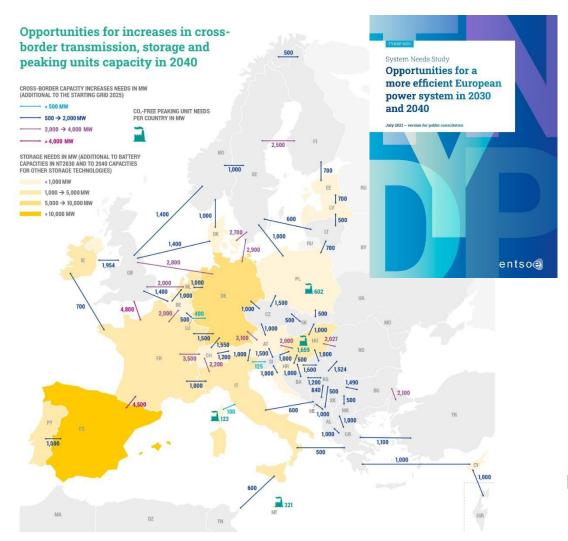
+100%

Additional system-level CO2 abatement when dispatch is partly optimized (80% instead of 100% matching level) with same system configuration

>\$200/MWh with Li-lon

LCOE of renewables plus Lithium-Ion battery hybrid solutions in most regions

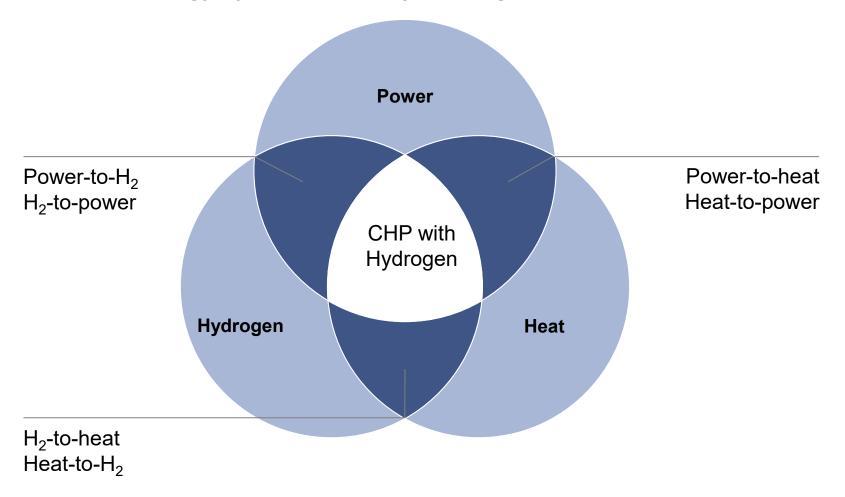
<\$100/MWh with LDES


LCOE of renewables plus LDES may decline to <\$100/MWh before ~2030 for 100% demand matching

10-30%

Additional cost reduction potential when dispatch is partly optimized (80% instead of 100% matching level) with same system

ENTSO-E maps needs for storage in 2040


Fullfillment of the 10% EU interconnection target in 2020

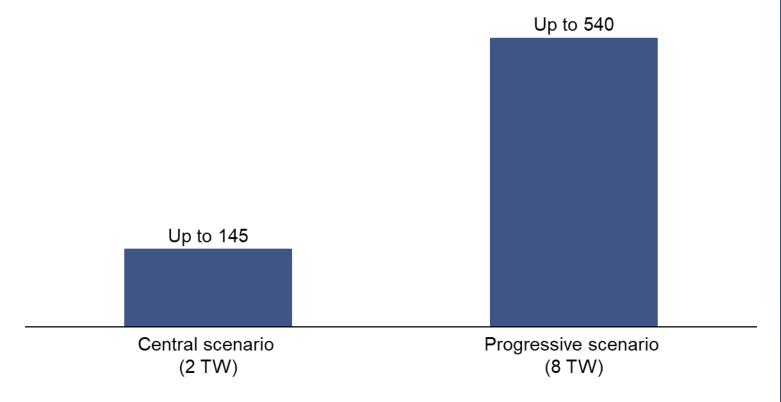
https://eepublicdownloads.entsoe.eu/clean-documents/tyndp-documents/TYNDP2018/rgip CSW Full.pdf

The transition to net zero requires an integrated energy system perspective

Maximize energy system flexibility to integrate variable renewables

Maximize flexibility within power, hydrogen and heat to meet 24/7 energy system needs

Increase interconnections between power, hydrogen and heat



Increase fixed infrastructure utilization and improve resiliency

System integration could save up to \$540 billion annually

Potential global savings generated by LDES in 2040¹ \$ billions/year

The introduction of LDES provides a longer duration firming capacity and thereby reduces the need for energy curtailment or redispatch

The system savings coming from LDES technologies are driven mostly by reduction of fuel costs

This system optimization translate into potential savings of USD 145 billion in a 2 TW case and **USD 540** billion annually by 2040 in an 8 TW case

Savings modelled based on estimated cost savings of up to USD 70 million per GW of LDES capacity installed, including fuel savings, and better utilization of variable generation resources

Thank you!